Agromet e-Advisor for Small Scale Farmers

Printer-friendly version

A lot has been done in using Information and Communication Technology (ICT) in business yet very little in solving agricultural problems in developing countries. Small scale farmers in developing countries lack adequate knowledge to interpret and understand weather information. Many weather dependent variables like rainfall, humidity, and temperature are not clearly understood by farmers. Farmers lack adequate knowledge to make use of weather variables in managing their crops. As a result, small scale farmers make decisions on grounds of uncertainties when carrying out operations like scheduling planting time, chemical application, crop nutrition and weeding making crop yields to be lower than expected.

     This project tried to find the most suitable way of processing the available data and disseminating agro-meteorological information to small scale farmers. In order to understand the underlying issues a survey was conducted to collect data from small-scale farmers, meteorologists, agricultural extension officers and a research station

     Different knowledge management approaches were surveyed on their usability for processing and disseminating agro-meteorological information to small scale farmers. An Expert System was designed and its knowledge base populated with knowledge and intelligence collected from the field. The user interface design uses internet and mobile phone technology.

     After implementing the prototype, some evaluations were made thorough comparison with human expert. The aim was to study whether the approach used really helped to solve knowledge management problem for small scale farmers. In these tests it emerged that the concept of knowledge management is a useful approach of processing the available data and disseminating agro-meteorological information to small scale farmers. Through evaluation tests conducted on the prototype, it was showed that a system developed out of the designed model would enjoy better accuracy levels of up to 66% in crop suitability prediction, 75% advance warning and 72% yield prediction. 

News and Events

Community Outreach

Contact Us

P. O. Box 30197 - 00100 GPO Nairobi
School of Computing & Informatics Building
Chiromo Campus, off Riverside Drive
University of Nairobi
Tel: +254-4447870,
       +254-4446543,
       +254-4446544
Fax: +254-4447870
Email: director-sci@uonbi.ac.ke

Locate Us

UoN Website | UoN Repository | ICTC Website


Copyright © 2017. ICT WebTeam, University of Nairobi